ENVIRONMENT | ÇINAR JMUN '20

ENVIRONMENT

COMMITTEE: ENVIRONMENT

AGENDA ITEM: Reycling Water in a Responsible Way to Protect Human Life and the Environment from Pollution

INTRODUCTION

The United Nations Environment Programme (UN Environment), established in 1972, is the voice for the environment within the United Nations system. UN Environment acts as a catalyst, advocate, educator and facilitator to promote the wise use and sustainable development of the global environment.

What Is Water Recycling?

Recycle: verb

A)To recover useful materials from garbage or waste

B)To extract and reuse.

While recycling is a term generally applied to aluminum cans, glass bottles, and newspapers, water can be recycled as well. Water recycling is reusing treated wastewater for beneficial purposes such as agricultural and landscape irrigation, industrial processes, toilet flushing, and replenishing a ground water basin (referred to as ground water recharge). Water recycling offers resource and financial savings. Wastewater treatment can be tailored to meet the water quality requirements of a planned reuse. Recycled water for landscape irrigation requires less treatment than recycled water for drinking water. No documented cases of human health problems due to contact with recycled water that has been treated to standards, criteria, and regulations have been reported.

Another type of recycled water is “gray water”.Gray water, or gray water, is reusable wastewater from residential, commercial and industrial bathroom sinks, bath tub shower drains, and clothes washing equipment drains. Gray water is reused onsite, typically for landscape irrigation. Use of non toxic and low-sodium (no added sodium or substances that are naturally high in sodium) soap and personal care products is required to protect vegetation when reusing gray water for irrigation. National Science Foundation (NSF) International has established a wastewater treatment task group on onsite residential and commercial gray water treatment systems. They have developed a draft new standard – NSF 350 – Onsite Residential and Commercial Reuse Treatment Systems. This standard encompasses residential wastewater treatment systems (similar to the scope of VSF/ANSI Standards 40 and 245) along with systems that treat only the gray water portion. For more information visit the NSF website Exiting EPA (disclaimer). EPA and CDC brought together agency and academic experts to explore the science available for addressing high-priority regional needs in the areas of:

How Can Recycled Water Benefit Us?

Recycled water can satisfy most water demands, as long as it is adequately treated to ensure water quality appropriate for the use. The Treatment and Uses chart shows types of treatment processes and suggested uses at each level of treatment. In uses where there is a greater chance of human exposure to the water, more treatment is required. As for any water source that is not properly treated, health problems could arise from drinking or being exposed to recycled water if it contains disease-causing organisms or other contaminants.

Recycled water can satisfy most water demands, as long as it is adequately treated to ensure water quality appropriate for the use.

Uses for Recycled Water

Agriculture landscape public parks golf course irrigation cooling water for power plants and oil refineries processing water for mills, plants toilet flushing dust control, construction activities concrete mixing artificial lakes

The use of gray water at decentralized sites (see definition) for landscape irrigation and toilet flushing reduces the amount of potable water distributed to these sites, the amount of fertilizer needed, and the amount of wastewater generated, transported, and treated at wastewater treatment facilities. In other words, water reuse saves water, energy, and money. Decentralized water reuse systems are being used more in the arid west where long term drought conditions exist. Successful gray water systems have been operating for many years,. They can meet up to 50% of a property’s water needs by supplying water for landscaping. Recycling gray water saves fresh potable water for other uses, reduces the volume of wastewater going to septic systems and wastewater treatment plants, and increases infrastructure capacity for new users.

What are the Environmental Benefits of Water Recycling?

In addition to providing a dependable, locally-controlled water supply, water recycling provides tremendous environmental benefits. By providing an additional source of water, water recycling can help us find ways to decrease the diversion of water from sensitive ecosystems. Other benefits include decreasing wastewater discharges and reducing and preventing pollution. Recycled water can also be used to create or enhance wetlands and riparian habitats.

Water Recycling Can Decrease Diversion of Freshwater from Sensitive Ecosystems

Plants, wildlife, and fish depend on sufficient water flows to their habitats to live and reproduce. The lack of adequate flow, as a result of diversion for agricultural, urban, and industrial purposes, can cause deterioration of water quality and ecosystem health. People who reuse water can supplement their demands by using a reliable source of recycled water, which can free considerable amounts of water for the environment and increase flows to vital ecosystems.

Water Recycling Decreases Discharge to Sensitive Water Bodies

In some cases, the impetus for water recycling comes not from a water supply need, but from a need to eliminate or decrease wastewater discharge to the ocean, an estuary, or a stream. For example, high volumes of treated wastewater discharged from the San Jose/Santa Clara Water Pollution Control Plant into the south San Francisco Bay threatened the area’s natural salt water marsh. In response, a $140 million recycling project was completed in 1997. The South Bay Water Recycling Program has the capacity to provide 21 million gallons per day of recycled water for use in irrigation and industry. By avoiding the conversion of salt water marsh to brackish marsh, the habitat for two endangered species can be protected.

Water Recycling Can Reduce and Prevent Pollution

When pollutant discharges to oceans, rivers, and other water bodies are curtailed, the pollutant loadings to these bodies are decreased. Moreover, in some cases, substances that can be pollutants when discharged to a body of water can be beneficially reused for irrigation. For example, recycled water may contain higher levels of nutrients, such as nitrogen, than potable water. Application of recycled water for agricultural and landscape irrigation can provide an additional source of nutrients and lessen the need to apply synthetic fertilizers.

Tackling Global Water Pollution

Once water is contaminated, it is difficult, costly, and often impossible to remove the pollutants. Still today, 80 per cent of global wastewater goes untreated, containing everything from human waste to highly toxic industrial discharges. The nature and amount of pollutants in freshwater determines the suitability of water for many human uses such as drinking, bathing, and agriculture.In addition, pollution of freshwater ecosystems can impact the habitat and quality of life of fish and other wildlife.Pollution in freshwater ecosystems can include pathogens (largely from human and animal waste), organic matter (including plant nutrients from agricultural run-off such as nitrogen or phosphorus), chemical pollution and salinity (from irrigation, domestic wastewater and runoff of mines into rivers). Plastic pollution, and emerging pollutants such as pharmaceuticals, also increasingly put our world’s waterways at risk, but the extent and impacts of their presence in our freshwater is largely unknown.A 2016 preliminary assessment of the water quality situation in rivers in Latin America, Africa and Asia, A Snapshot of the World’s Water Quality, estimates that severe pathogenic pollution affects around one third of all rivers, severe organic pollution around one seventh of all rivers, and severe and moderate salinity pollution around one-tenth of all rivers in these regions.

What the UN Environment does

The Global Programme of Action for the Protection of the Marine Environment from Land-based Activity concentrates on the regulation and reduction of wastewater, marine litter and nutrient loading.

UN Environment promotes nature-based solutions to water resources management, including for water quality, and is contributing to the topic for the 2018 World Water Day and 2018 World Water Devolpment Report coordinated by UNESCO WWAP (World Water Assessment Programme).

UN Environment is also the global custodian of Sustainable Development Goal (SDG) helping countries understand, measure and report on ambient water quality